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MULTIPLE DECISION PROCEDURES FOR ANOVA OF TWO-LEVEL 

FACTO RIAL FIXED-EFFECTS REPLICATION-FREE M P E R  IMENTS* 

by A r t h u r  G. Holms and J N. Berrettoni? 

Lewis Research Center 

SUMMARY 

For expensive areas of experimentation, such as alloy development, pressure vessel 
burst testing, and high-temperature protective coatings, the appropriate experiments 
consist of two-level fixed-effects factorial designs without replication. No adequate pro- 
cedures have been available for the statistical analysis of such experiments. 

terms of a model equation as fitted to the observations from a fractional factorial ex- 
periment. 
ordered squared coefficients of the model equation in the denominator of a test statistic. 
F' 9pwise testing, in the increasing order of succeeding squared coefficients, pools 
. ~ ~ i g n i f i c a n t  squares into the denominator of the statistic, which is used for continued 
testing. 

Monte Carlo computations were performed to determine the decision e r r o r  prob- 
abilities for many different variations of chain pooling and to compare the relative ad- 
vantages of the variations for fractional factorial experiments with 2 , 2 , and 2 treat- 
ment combinations. These computations were performed with values of the significant 
coefficients distributed in such a manner as to contribute to high probabilities of decision 
errors ,  so  that the recommended procedures a r e  good against the worst possible con- 
ditions. 

For any real  experiment, the actual decision e r ror  probabilities depend on the mag- 
nitudes of the coefficients. A method is given for  estimating upper limits of weighted 
average decision e r r o r  probabilities after the coefficients have been estimated. The 

A procedure called "chain pooling" is introduced for testing the significance of 

The procedure starts with a small group containing only the smallest of the 
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*This report is based on a dissertation submitted in partial fulfillment of the r e -  
quirements for the degree of Doctor of Philosphy, at Western Reserve University, 
Cleveland, Ohio, June 1966. 

?Chairman, Department of Statistics, Western Reserve University, Cleveland, Ohio. 



procedures are illustrated by an example from high -temperature -alloy development. 

INTRO DUCT10 N 

The factorial experiment is useful for observing the response of a continuous de- 
pendent variable to changes in the independent variables. The independent variables 
may be continuous, discrete, o r  qualitative. The factorial experiment is preferred to 
other designs when certain combinations of levels of the independent variables can affect 
the response (interact). 

If independent variables xl, x2, x3, . . . a r e  to be investigated at numbers of 
levels a, b, c, . . . , and if the e r ror  is to be measured with an r-fold replication, 
the full factorial experiment includes r - a' b* c . . . observations. A replicated 
full factorial experiment can be too expensive in such fields as alloy development, 
destructive tests of structures (liquid rocket fuel tank bursting), or where many vari- 
ables a r e  involved (high -temperature protective coatings). 

Identifying those factors that affect the response directly o r  through interactions is 
done efficiently by performing the experiments at only two levels of each factor. A full 
factorial experiment on g factors then requires 28 observations and provides esti- 
mates of the direct effects and all interactions. 

The interactions involving the larger numbers of factors are often anticipated to be 
negligible, and the experiments are then performed as fractional replicates. A f rac-  
tion ( 1/2)h of the full factorial experiment is performed. The number of observations 
is 

and I =g-h. 

any existing interactions should be discovered. The basic design could involve ,agmh 
observations, where an r-fold replication is used to estimate the e r ror  variance. The 
economy achieved by not replicating (by setting r = 1) carr ies  the penalty that there is 
no obvious, or prior, valid mean square for estimating the e r ror  variance, and an 
estimate of e r ror  variance is needed in selecting those effects that will be judged sig- 
nificant. 

If replication is lacking, a customary practice, according to Davies (ref. 1, p. 286): 
consists of pooling some arbitrary number of the highest order interaction mean squares 
into an estimate of e r r o r  variance. However, if this practice is followed, any unknown 
block effects could inflate some of the pooled interactions and thereby give too large an 

The 2g-h experiment is preferred when each experimental unit is costly but where 
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estimate of e r ro r  variance. Too large an e r ro r  estimate reduces the sensitivity of 
subsequent tests to detect real effects among the estimates of the main effects and lower 
or der interactions. 

The preservation of sensitivity, when pooling mean squares into the estimate 
of e r ro r  variance, has been an object of the procedure of Daniel (ref. 2) and of Wilk, 
Gnanadesikan, and Freeny (ref. 3). Daniel uses the absolute values of the effect esti- 
mates as order statistics. These values are plotted on probability paper and the result 
is called a half-normal plot. Such a display, combined with a background of experience, 
might provide a method by which a skillful user could pass judgment on the results of 
an experiment. Daniel concluded that the half-normal plot can be used to make judg- 
ments about the reality of the largest effects observed only if a small  proportion of the 
effect estimates represent real effects. 

results on significance a r e  limited to the single largest order statistic. H e  concluded, 
however, that such procedures are optimal with respect to the two largest order sta- 
tistics. 

For the 2' experiment, and aside from the grand mean, there a r e  2' - 1 mean 
squares requiring decisions as to significance. The procedure of Wilk, Gnanadesikan, 
and Freeny (ref. 3) requires that some subjective o r  prior knowledge be used to decide 
that 77 of the 2' - 1 mean squares do not contain real effects and that, therefore, 
p = 2' - q - 1 mean squares do contain real effects. As shown in reference 3, the pro- 
cedure is not robust against e r r o r s  in guessing the value of q ,  and q must be guessed 
because it is an unknown in the problem. 

Daniel and Birnbaum have limited their results t o  experiments where only a small 
proportion of the effects are thought to be significant. On the other hand, situations can 
exist where the experimenter might design a two-level factorial experiment so that a 
large proportion of the effects will  be significant. A particular example occurs in the 
development of superalloys. These alloys typically contain 5 to 15 elements. One proce- 
dur for finding an optimum composition is to use Box-Wilson techniques (ref. 1, p. 495). 
The first phase fits a first-degree response model to data gathered from a factorial 
experiment. The costs of experimenting and the need to investigate many elements 
imply that experiments should be fractionally replicated. Efficiency of the fractional 
design requires that most of the degrees of freedom (in fitting the linear model) be as- 
signed to the direct effects with only a few contrasts assigned to the interactions. The 
Box-Wilson techniques also imply that the experimenter will  achieve conditions where the 
first-degree model is no longer valid. He needs a method for deciding to abandon the 
first-degree model. One such method regards those interactions that are evaluated as a 
sample of higher degree effects. If they give evidence of higher degree, the experimenter 
performs the more extensive experiments required by the second-degree model. 

Birnbaum (ref. 4) investigated procedures related to half -normal plotting. His 

(Se - 
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quences of blocked fractional designs, especially appropriate to proceeding in steps from 
the first-degree model to the second-degree model, were presented in ref. 5.) 

The observed effects from the two-level experiment a r e  thus used for three pur- 
poses: 

(1) To estimate e r ro r  variance 
(2) To evaluate main effects and test their significance 
(3) To evaluate interaction effects and test their significance 
In alloy development, the metallurgist often has enough prior knowledge to set com- 

position levels so that most of the main effects will be significant. Consequently, the 
testing of the sample of interactions must be based on an e r ro r  variance estimate that 
comes from a small  (but not predetermined) number of nonsignificant effects. Decision 
procedures are needed that will use a small conditional number of effects to estimate 
e r ro r  variance. Such procedures were not provided by Daniel o r  Birnbaum. 

The method proposed herein called chain pooling, tests a major proportion of the 
mean squares in the order of increasing magnitude. Certain procedures will be pro- 
posed as being reasonable. Their properties will not be investigated analytically; how- 
ever, appropriate risk functions will be defined and several variations of the suggested 
procedures will be evaluated by Monte Carlo methods in terms of the risk functions. 
The investigation will be limited to experiments that are of 2 , 2 , and 2 fractional 
factorial design. 
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SYMBOLS 

Cochran's statistic for largest of j mean squares 

expectation of (. . .) 
single observation random e r ro r  

number of factors in two-level experiment 

fractional replicate contains (1/2) 

subscript denoting order of computing mean squares according to Yates' 

subscript denoting jth smallest mean square (exclusive of grand mean) 

h observations of full factorial experiment 

algorithm; i = 0, 1, 2, . . ., 2' - 1 

j =  I, 2, . . - 9  2 ' - 1  

subscript 

loss for decision d under parameter hi 
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Q experiment contains 2' treatment combinations and produces that many 
observations 

m 

N 

N(. . .) 
n 

pli 

'2i 

R1 

R2 
r 

'j 
v(. . .) 
X 

Y 

Z 

CY 

Qlf 

P 
P CY 

6i 

x 

number of mean squares pooled before testing begins 

number of Monte Carlo generated experiments 

normal distribution with parameters (. . . ) 
sample size 

observed probability of type 1 e r ro r  when testing ith mean square 

observed probability of type 2 e r ro r  when testing ith mean square 

risk associated with type 1 e r ro r s  

risk associated with type 2 e r r o r s  

number of replications 

test statistic defined by eq. (8) 

variance of (. . .) 
levels of independent variables 

response 

mean square 

test size 

nominal size of f i n a l  significance test 

nominal size of preliminary pooling test  

type 2 e r ro r  probability 

parameter determining relative magnitudes of real effects in any one 

expectation of jth order statistic of a 2 
number of mean squares having noncentrality parameter of zero 

estimate of 77 

scale parameter 

estimate of A 

average noncentrality parameter 

coefficients of eq. (1) that are estimated in Yates' order from Yates' contrasts 

estimate of pi 

experiment 

variable 
( 1) 
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P number of real effects 

6 estimate of p 

C(.  . .) summation of (. . .) 
u standard deviation 

a estimate of u 
2 x (. . . ) chi-square distribution with (. . .) degrees of freedom 

rcI detection efficiency defined by eq. (15) 

* 

CHAIN POOLING 

Analysis of Variance Model 

Consider a 2' experiment with I = 4. The factors can be qualitative or quantita- 
tive and are named xl ,  x2, x3, and x4. Their levels a r e  represented by +1 for  the 
upper level and by -1 for the lower level. The model for the response is then written as 

where 

2 E(e) = 0; V(e) = u 

2 and e is independently N(0, u ). 
Q The observations from the 2 treatments are used to'compute mean squares con- 

veniently by Yates' method (ref. 1, p. 263). Assume that the mean squares Zi have 
been computed in Yates' order and in this order are labeled Zo, Z1, . . . , Zn, where 
n = 2' - 1. The coefficients of equation (1) are in Yates' order. The expectations of 
the Zi are 

2 1 2  E(Zi) = + 2 pi 

i = o ,  1 , 2 , .  . . , # - I  
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The quantities Zi /cr2 are either central chi-square or, more generally, noncentral 
chi-square variables that have 1 degree of freedom (ref. 6, p. 227). Let Xi be the 
noncentrality parameter. Then 

Risk Functions 

Assume that n single degree-of -freedom mean squares are drawn from n popula- 
tions. An unknown number p of the populations have real effects (Xi > 0) and the 
balance are null populations (Xi = 0). 'A number 6 of the populations are to be selected 
with the hope that they will be the populations with Xi > 0). 

E r ro r s  of selection a r e  assumed to produce losses that depend on the parameters Xi 
and on the decision d as given by loss functions L(Xi, d). The loss for any correct 
decision is defined as zero. If the ith population is correctly decided to be null, the 
type 1 loss is 

If the ith population is correctly decided to  be nonnull, the type 2 loss is 

L2(hi, d) = L2(Xi > 0, Xi > 0) = 0 

If the ith population is incorrectly selected (null hypothesis incorrectly rejected), 
a type 1 unit loss is assumed: 

L1(Xi, d) = L1(Xi = 0, Xi > 0) = 1 (4) 

of a 
This definition equates the type 1 
type 1 error .  
A dimensionless parameter 0 is 

1 

P 
- 

risk (expectation 

defined by 

Q$l 

i= 1 

of type 1 loss) to the probability 
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Let 

Then 

pi 6. = - 
eo 1 (5) 

A long tradition exists for saying that losses in estimation are proportional to the 
square of the error.  This tradition is followed by saying that if pi is incorrectly de- 

2 cided to be zero, the type 2 loss will be proportional to pi. The type 2 loss is made 
proportional to the square of the pi (if not selected) by 

The type 2 risk (expectation of a type 2 loss) is therefore equal to the probability of 
2 a type 2 e r ro r  multiplied by a weighting factor 6i, where the 6? is proportional to 

the square of the pi that was not selected, and where the weighting factors have a 
mean value of 1 for the set of p nonnull populations. 

Test Statistics 

As stated in reference 4, the optimal decision procedure for p 5 1 uses a test 
developed by Cochran (ref. 7). The Zi in Yates' order (omitting the mean square for 
the grand mean) are ordered in nondecreasing magnitude as Z 

j' 

Z 1 ' Z 2 ' ' .  . 5 Z . ' . .  . 5 Z n  
J 

Cochran's statistic is 

Cn = 
'n 

z l + .  . . + z n  
and the null hypothesis is rejected with test size (Y if Cn exceeds the upper 1 0 0 ~ -  
percent point of Cochran's distribution, which has been additionally tabulated in ref - 
erence 8. 
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Assume that the Xi with Yates' order a r e  written as A. in nondecreasing order of 
If Xn > 0 

J 
the mean squares. Rejection with Cochran's statistic suggests that An > 0. 
is true, then Anel might be tested with the statistic 

Suppose = 0 is rejected. This suggests that the test of & had very low 
sensitivity because of the inflated denominator. Obviously, a general multiple decision 
procedure cannot be developed using Cochran's test in the descending order of the mean 
squares. In ascending order, let 

z2 c, = 

and if the test based on this statistic accepts X2 = 0, use the conclusion as an assump- 
tion and form 

z3 c -  
- z1 + z2 + z3 

In other words, assume that the smallest mean square Z1 has been drawn from a 

population with X1 = 0. Proceed stepwise with test statistics Cj so long as C j -1 
indicates A = 0. At the first rejection of the null hypothesis (e. g., for C-), conclude 
that X j  > 0, and because of the ordering, immediately conclude that Xk > 0 for all 
k L j. Thus, Cochran's test has been generalized to a sequence of dependent tests; 
furthermore, the number of items that should be in the denominator is always unknown. 
For  these reasons the nominal CY of Cochran's test will not be the true size for the 
multiple procedure. 

A trivial transformation of Cochran' s statistic provides an alternative statistic. 
It is 

j -1 J 

j Z j  u. = 
z 1 + .  . . + z j  

j = 2 , .  . ., n 
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The basic process of chain pooling begins with hl = 0 and j = 2. At each stage of 
the testing, the composite null hypothesis 

.' xn X I = ,  . . ., - - xj-1= A.  = 0; 0 <xj+l,  . . 
J 

is tested against the composite alternative hypothesis 

- x1 = , . . . , - xj-l = 0; 0 < x., h j + l ,  * * - 9  'n 

The null hypothesis is rejected at the first j for which U. exceeds the tabulated 1 O O a -  
percent point (table I) and the immediate conclusion is 

J 

0 < xj, xj+l, . . . , An 

Partly analogous to the method of Wilk et al. (ref. 3) some small number m 2 1 
of the smallest ordered mean squares are assumed to have been drawn from null popula- 
tions so that testing begins with j = m + 1. Testing begins with the critical U. values 
corresponding to a large nominal significance level a where typically 0.25 5 

a! 5 1.0. 

remains fixed at m + 1, and testing proceeds at the final nominal level af, where 
typically 0.001 5 af 5 0.05. The test statistic for  the jth mean square is then 

J 
P' 

P 
The special case of a = 1.0 means that the number of items Jn the denominator P 

(m + 1)Z,  
. J  

j 
z 1 + .  . . + z m + z  (9) 

If a < 1 . 0 ,  the tests (with the use of eq. (8)) at nominal level a a r e  called 
P P 

preliminary tests, and they continue so long as nonsignificance is the result. All Zj  
testing nonsignificant remain in the denominator. This procedure is analogous to the 
familiar "sometimes poolfo procedures that have been used in two-stage testing. Be- 
cause a is large, early in the chain some Z j  would be selected as being too large 

P to be an obvious member of a population with X j  = 0. On the other hand, because a 
is large, there should be no great confidence that Zj was drawn from a population 
with hj > 0. Therefore, a new level af < a is imposed. If a Z j  is significant at 
level a! 

If Zj is concluded to be significant at level cyf, then all Zk(k 2 j) a r e  concluded to be 
significant. 

P 

P 
the same Z .  is tested at level af, also with the use of the Uj statistic. P' J 
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TABLE I. - UPPER l O O a  PERCENT POINTS OF TEST STATISTIC Uj 

Yumber of 
lenomina - 
tor mean 
squares, 

j 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

2 1  
22 
23 
24 
25 

26 
27 
28 
29 
30 

3 1  
32 
33 
34 
35 

0.001 

2.0000( 
2.9976 
3.976 
4.887 

5. 74 
6.51 
7.20 
7.81 
8.34 

8.82 
9.26 
9.67 
0.05 
0.40 

0. 72 
1.01 
1.28 
1. 53 
1.76 

1.98 
2.19 
2.39 
2. 58 
2. 76 

2.93 
3.09 
3.24 
3.39 
3.53 

3.67 
3.80 
3.93 
4.05 
4. 17 

0.002 

1.9999! 
2.9960 
3.962 
4.845 

5.63 
6.33 
6.96 
7.52 
8.01 

8.44 
8.84 
9 .21  
9.55 
9.86 

.O. 14 

.O. 40 

.O. 64 

.O. 86 
-1.07 

-1.28 
.1.48 
.l. 68 
.l. 87 
12.05 

.2.22 

.2.38 

.2.53 

.2.68 

.2.82 

.2.96 

.3.09 

.3.21 

.3.32 

.3.43 

0.005 

1.9999: 
2.9904 
3.925 
4.758 

5.46 
6. 11 
6. 65 
7.10 
7. 53 

7.95 
8.33 
8.68 
8.95 
9.20 

9.43 
9.64 
9.84 
.O. 03 
.0:22 

.O. 40 

.O. 58 
-0.76 
.o. 93 
.l. 10 

.l. 26 

. I .  4 1  

.l. 55 

.l. 68 

.l. 80 

.l. 9 1  

.2.01 

.2.10 

.2.19 

.2.27 

Nominal test  size, a 

0.01 

1.9998 
2.9809 
3.870 
4.65 

5.31 
5.87 
6.35 
6.78 
7.17 

7.53 
7.87 
8.16 
8.42 
8.66 

8.83 
9.00 
9.17 
9.34 
9. 51 

9.67 
9.83 
9.99 

10.14 
10.29 

10.43 
IO. 56 
10.68 
10.78 
10.88 

10.98 
11.07 
11.16 
11.25 
11.34 

0.025 

1.99917 
2.951 
3.760 
4.44 

4.99 
5.46 
5.88 
6.26 
6. 59 

6.89 
7.13 
7.37 
7.59 
7.79 

7. 96 
8. 12 
8. 28 
8.43 
8.  58 

8. 72 
8. 86 
8.99 
9.12 
9.23 

9.34 
9.44 
9.54 
9.64 
9.74 

9.83 
9.91 
9.99 

10.07 
10.15 

0. 05 

1.99685 
2.904 
3.625 
4.21 

4.68 
5.09 
5.44 
5.75 
6.03 

6.28 
6. 50 
6.71 
6.91 
7.07 

7.23 
7. 38 
7. 52 
7.65 
7.78 

7.90 
B. 02 
B. 13 
B. 24 
B. 34 

B. 44 
B. 54 
6.63 
B. 72 
B. 8 1  

B. 89 
B. 97 
9. 04 
9 . 1 1  
3. 18 

0.10 

1.9877 
2.806 
3.412 
3.89 

4.28 
4.61 
4.91 
5. 17 
5.41 

5.61 
5.81 
5.99 
6.15 
6.30 

6.44 
6.57 
6.69 
6.81 
6.92 

7.03 
7.13 
7.23 
7.33 
7.42 

7.51 
7.60 
7.68 
7.76 
7.83 

7.90 
7.97 
8.04 
8.11 
8.17 

0.25 

1.923 
2.527 
2.949 
3.287 

3.57 
3.83 
4.06 
4.27 
4.45 

4. 62 
4.77 
4.92 
5.05 
5.17 

5.29 
5.40 
5. 50 
5.60 
5.69 

5. 78 
5.87 
5.95 
6.03 
6. 11 

6. 18 
6.25 
6.32 
6.38 
6.44 

6. 50 
6. 56 
6.62 
6.68 
6.74 - 

0. 50 

1.706 
2.086 
2.395 
2.658 

2.893 
3.11 
3.29 
3.45 
3.60 

3.74 
3.87 
3.99 
4. 10 
4.20 

4.30 
4.39 
4.48 
4. 56 
4.64 

4.71 
4.78 
4.85 
4.92 
4.98 

5.04 
5. 10 
5.16 
5.22 
5.28 

5.33 
5.38 
5.43 
5.48 
5.53 

0.75 

1.382 
1.688 
1.961 
2.184 

2.371 
2.54 
2.69 
2.82 
2.95 

3.07 
3.17 
3.27 
3.37 
3.46 

3.55 
3.63 
3.70 
3.77 
3.84 

3.90 
3.96 
4.02 
4.08 
4.14 

4.19 
4.24 
4.30 
4.35 
4.40 

4.45 
4.50 
4.54 
4.58 
4.62 
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TABLE I. - Concluded. UPPER l0Oa PERCENT POINTS OF TEST STATISTIC Uj 

Number of 
denomina - 
tor mean 
squares, 

j 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 

0.001 

14.29 
14.41 
14.53 
14.64 
14.75 

14.85 
14.95 
15.05 
15.15 
15.24 

15.33 
15.42 
15.50 
15.58 
15.66 

15.73 
15.80 
15.87 
15.93 
15.99 

16.05 
16.11 
16.17 
16.23 
16.29 

16.34 
16.39 
16.44 

0.002 

13.53 
13.63 
13.73 
13.82 
13.91 

14.00 
14.09 
14.17 
14.25 
14.33 

14.40 
14.47 
14.54 
14.60 
14.66 

14.72 
14.79 
14.85 
14.91 
14.97 

15.03 
15.10 
15.16 
15.22 
15.28 

15.34 
15.40 
15.46 

~ 

0.005 

12.35 
12.43 
12.51 
12.59 
12.67 

12.75 
12.83 
12.90 
12.97 
13.05 

13.12 
13.19 
13.26 
13.32 
13.38 

13.44 
13.50 
13.56 
13.62 
13.67 

13.72 
13.77 
13.82 
13.87 
13.92 

13.97 
14.02 
14.06 

~ 

Nominal test size, a 

0.01 

11.43 
11.51 
11.59 
11.67 
11.75 

11.83 
11.90 
11.97 
12.04 
12.11 

12.18 
12.25 
12.32 
12.38 
12.44 

12.50 
12.56 
12.62 
12.68 
12.73 

12.78 
12.83 
12.88 
12.93 
12.97 

13.01 
13.05 
13.09 

0.025 

10.22 
10.29 
10.36 
10.43 
10.50 

10.57 
10.64 
10.70 
10.76 
10.82 

10.88 
10.94 
11.00 
11.06 
11.11 

11.16 
11.21 
11.26 
11.31 
11.36 

11.40 
11.44 
11.48 
11.52 
11.56 

11.60 
11.64 
11.67 

0.05 

9.25 
9.31 
9.37 
9.43 
9.49 

9.55 
9.61 
9.67 
9.72 
9.77 

9.82 
9.87 
9.92 
9.97 
10.02 

10.07 
10.12 
10.17 
10.21 
10.25 

10.29 
LO. 33 
LO. 37 
LO. 41 
LO. 45 

LO. 49 
LO. 53 
LO. 57 

0.10 

8.23 
8.29 
8.35 
8.41 
8.46 

8.51 
8.56 
8.61 
8.66 
8.71 

8.76 
8.81 
8.85 
8.89 
8.93 

8.97 
9.01 
9.05 
9.09 
9.13 

9. 17 
9.21 
9.25 
9.29 
9.33 

9.37 
9.41 
9.45 

0.25 

6.80 
6.85 
6.90 
6.95 
6.99 

7.03 
7.07 
7.11 
7.15 
7.19 

7.23 
7.27 
7.31 
7.35 
7.39 

7.43 
7.47 
7. 51 
7.55 
7.59 

7.63 
7.67 
7.70 
7.73 
7.76 

7.79 
7.82 
7.85 

0.50 

5. 58 
5.63 
5.67 
5.71 
5.75 

5.79 
5.83 
5.87 
5.91 
5.95 

5.99 
6.03 
6.07 
6.11 
6. 14 

6.17 
6.20 
6.23 
6.26 
6.29 

6.32 
6.35 
6.38 
6.41 
6.44 

6.47 
6.50 
6. 53 

0.75 

4.66 
4.70 
4.74 
4.78 
4.82 

4.86 
4.90 
4.94 
4.98 
5.01 

5.04 
5.07 
5.10 
5.13 
5. 16 

5.19 
5.22 
5.25 
5.28 
5.31 

5.34 
5.37 
5.40 
5.43 
5.46 

5.48 
5. 50 
5.52 
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Suppose Z is significant at level a! but not at level af. Continue testing 
j P' 

Zj+l, . . . until some Zk is reached that tests significant at cyf, where only the 
first j - 1 mean squares were judged to be from null populations: 

If some Zk is significant at level af, all larger mean squares a r e  also concluded to 
be significant. 

Computation of Uj Distr ibut ion 

The chain pooling procedures require nominal significance levels additional to 
those given in reference 8. Critical points of U. were obtained with the use of a Monte 

1 

TABLE II. - COMPARISON OF PERCENTAGE POINTS OF STATISTIC Uj 

OBTAINED FROM MONTE CARLO COMPUTATIONS WITH PERCENTAGE 

POINTS OF uj COMPUTED FROM TABLES OF COCHRAN'S  STATISTIC^ 

gumber oj 

lenomina- 
tor mean 
squares, 

j 

2 
3 
4 
5 
6 

7 
8 
9 
10 
12 

15 
20 
24 
30 
40 
60 

Nominal test size, a! 

0.01 

j 
Critical point, U 

Cochran 

1.9998 
2.9799 
3.8704 
4.6395 
5.2968 

5.8632 
6.3560 
6.7896 
7.1750 
7.8336 

8.6205 
9.5980 
10.1928 
10.8960 
11.7600 
12.9060 

rlorite Carlo 

1.99986 
2.9809 
3.870 
4.65 
5.31 

5. 87 
6.35 
6.78 
7.17 
7. 87 

8.66 
9.51 
10.14 
10.88 
11.75 
12.97 

Xfferencc 

0.0001 
. 0010 

. 01 

. 01 

. 01 
-; 01 
-. 01 
-. 005 
.04 

.04 
-. 09 
-. 05 
-. 02 
-. 01 
.06 

. aoo 

0.05 

Test statistic, U. 
1 

Zochran 

1.9970 
2.9007 
3.6260 
4.2060 
4.6848 

5.0897 
5.4384 
5.7465 
6.0200 
6.4920 

7.0635 
7.7880 
8.2416 
8.7870 
9.4800 
10.4220 

Monte Carl( 

1.99687 
2.904 
3.625 
4.21 
4.68 

5.09 
5.44 
5.75 
6.03 
6.50 

7.07 
7.78 
8.24 
8. 81 
9.49 
10.45 

Differencc 

-0.0001 
.003 

-. 001 

. 00 

. 00 

. 00 

. 00 

. 01 

. 01 

. 01 
-. 01 
. 00 
.02 
. 01 
.03 

. ao 

aRef. 8. 
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Carlo method, as described in reference 9, and are given in table I. These points are 
compared with Cochran's statistic in table 11, and the comparison suggests that the re- 
sults are in agreement to better than one unit in the next to the last figure reported. 

EVALUATION OF CHAIN POOLING PROCEDURES 

Risk Curves 

The relative importance of type 1 and type 2 e r ro r s  depends on the application 
so that a general evaluation of a decision procedure cannot combine the type 1 and 
type 2 losses. A procedure is usually chosen that involves nonzero probabilities of 
both types of errors ,  but the losses associated with one or the other type may dictate 
that a strong effort be made to control just one of the two types. A compromise is 
chosen where a lowered probability of one type of e r r o r  will  increase the probability 
of the other. An evaluation of the operating characteristics of a multiple decision pro- 
cedure must therefore exhibit the se t  of possible compromises. 

by Monte Carlo methods. The results, therefore, will  show the relative frequency with 
which type 1 and type 2 decision e r ro r s  have been made. Multiplying the observed 
relative frequencies by the type 1 and type 2 losses, as given in equations (4) and (7), 
produces quantities that will be called the observed type 1 and type 2 risks. 

For a given procedure, a set of choices (such as differing values of nominal cy) 

could produce a set of pairs of r isk values R1 and R2 as indicated, for a hypothetical 

The operating characteristics of the chain pooling procedures will be determined 

N 

I 
0 1.0 

Type 1 risk, R 1  

Figure 1. - Considerations i n  evaluation of pooling pro- 
cedures. 
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example, by the set of points consisting of curve A of figure 1. On the other hand, a 
different procedure could lead to a set of risk values such as those of curve B. Over 
the range C for any given R1, curve B has lower R2 than curve A o r  for any given R2, 
curve B has lower R1 than curve A. The procedure resulting in curve B, therefore, 
is a preferred procedure over the range C with respect to the procedure that gave 
curve A. 

Parameters of Risk Curves 

A digital computer (IBM 7094) was used to generate pseudonormal random variables, 
Q Q as described in reference 9. For 2 treatments, 2 such numbers were used with 

Yates' algorithm to compute mean squares. The use of Yates' algorithm with pseudo- 
normal variates gives contrasts that are the sum of 2' approximately normal variates. 
The central limit theorem therefore implies that an improved approximation to nor- 

variates had mality was obtained, over what would have been obtained if pseudo u 
been generated more directly. 

Suppose that the contrasts computed with Yates' algorithm are listed in their order 
of computation. A s  in typical experiments with real data, the first mean square for 
total or grand mean is excluded from further consideration. Each subsequent contrast 
is augmented by the addition of an increment, 2 Gi0u, for  i = 1, . . . , p; p 5 2' - 2. 
In terms of equation (5), the increment is 2 pi; that is, the parameter estimated by 
the contrast has been given the value pi. The mean squares, therefore, have noncen- 
trality parameters, as given by equation (3).  

In the analysis of a physical experiment, the two types of parameters are the un- 
known parameters of the populations as chosen by "nature" and the parameters of the 

2 ANOVA strategy as chosen by the statistician. The unknown parameters are p,  u , 
and Xi; i = 1, . . . , p. The parameters assigned by the statistician in the case of 
chain pooling are m, (Y 

that values must also be assigned to p,  u , and Xi.  Because the procedure is scale 
invariant, the investigation can be simplified to u2 = 1. 

The values of p and xi are to be chosen so that they will impose a severe burden 
on the available strategies. Application of a wide variety of strategies should then pro- 
vide a demarcation of the superior strategies. 
based on combinations of Xi values 'that are especially unfavorable with respect to 
type 2 errors .  A complete investigation of the operating characteristics of the multiple 
decision procedures would evaluate p type 2 er ror  probabilities as joint functions of 
the h l ,  X2, . . . , X p .  Such an investigation m u l d  not be readily interpretable. The 
problem is simplified by defining a type 2 risk as the expectation, over the experiment, 

x( 1) 

Q 
Q 

and cyf. The generation of Monte Carlo experiments requires 
P' 2 

The strategy evaluations should be 
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. . _. . .. 

of losses due to type 2 errors .  Obviously, the type 2 risk will be sensitive to the dis- 
tribution of the hi over i = 1, . . . , p.  The scope of the investigation is reduced to 
manageable size by considering only such distributions of the 
especially unfavorable operating characteristics. 

as should result in 

Unfavorable Distr ibut ion of Parameters 

distribution, the correct decisions 
would be that all hi = 0. The order statistics Z. would have some set of expectations 
oOcj. On the other hand, suppose that the Zi were drawn from n noncentral chi- 
square populations, each having a noncentrality parameter such that 

o w  If all the Zi had come from one central 0 

2 J 

2 2  (1 + ki)u = uoPj; i, j = I, . . . , n 

The resulting mean squares would thus have expectations equal to the expectations of 
the order statistics of the central uix("1) distribution. This equating of expectations 
of mean squares from n noncentral populations to the expectations of the ordered ob- 
servations of the single central population implies that, f o r  the noncentral populations, 
the multiple decision procedure might have selection probabilities (power functions) no 
larger than the type 1 e r ro r  probabilities for the central 0 x2 
set of hi values would therefore constitute a distribution that would be unfavorable to 
the selection probabilities under chain pooling. 

population. Such a 
0 (1) 

From equations (3) and (5), 

Therefore, an unfavorable distribution of the hi can be obtained by setting 

where the 5 .  are the expectations of the order statistics of a sample of size p from 
the central i2 distribution. (These values of <. are such that 6i = <p-j+l will 
satisfy eq. (6)). Expectations of order statistics from a gamma distribution with 

2 
( 1) J 

16 



c 

scale parameter 1, shape parameter 1/2, and many sample sizes were tabulated in 
reference 10. Multiplying these values by 2 gives the expectations of the order sta- 
tistics of the central x2 
with such unfavorable sets of hi values except that the number p of Xi # 0 was less 
than n. 

In general, efficient experimentation is achieved when q is small in comparison 
with p,  and this is achieved when the experimenter uses his prior knowledge to choose 
that fractional factorial design that results in most of the mean squares being significant. 
Correspondingly, values of q of 4, 6, and 9 were investigated for 2 treatment com- 
binations; values of 6, 9, and 14 were investigated for the 2 
23, and 33 were investigated for  the 2 case. All the distributions of the Xi were ob- 
tained from reference 10 for values of p = 6 to p = 40. For  the single case of p = 50, 
the distribution of Xi was obtained with the use of an approximation to c.  as described 
in reference 9. 

distribution. The Monte Carlo experiments were performed 
(1) 

4 
5 case; and values of 13, 

6 

' J  

The fixing of the distribution of the Xi allows the type 2 risk to be investigated as 
a function of a single parameter X, where A is the mean of the Xi over i = 1, . . ., p: 

1 p  
X=-C 'i 

P i=l 

From equations (3), (5), (6), and (11), 

i= 1 

Q 2  = 2  e 

Minimax and Bayes Strategies 

Monte Carlo investigations to select from many strategies (m, Q af) the strategy 
best against a very unfavorable distribution of the hi should result in what might be 
called an "empirical minimax procedure. ' ?  The problem may also be approached from 
a Bayesian point of view. It would require the assumption of a prior probability dis- 

P' 
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tribution of the effects pi. The pi in an experimental situation might be the additive 
result of several diverse sources. The pi could then be regarded as a sample of 
size p from an  approximate prior normal distribution with mean zero, and in this 
situation it was assumed that nature is a disinterested opponent. The S? would then 
be the order statistics of a sample of size p from a x2 
words, if nature is a disinterested opponent, the same prior distribution of the 
should occur as would be anticipated from a n  aggressive opponent. The Monte Carlo 
founded minimax procedure is then also the Monte Carlo founded Bayes' procedure. 

J 
distribution. In other 

6i 
(1) 2 

Scorekeeping for Monte Carlo Experiments 

After being augmented, the Z i  aye ordered in ascending rank, and the m smallest 
Zi a r e  presumed to have been drawn from null populations. The next 2' - 1 - m mean 
squares a r e  examined for significance in accordance with equations (9) o r  (10). A type 1 
error is counted for the test of Zi if both (1) the test of Zi resulted in rejection of the 
null hypothesis, and (2) the particular Zi is a mean square that had not been augmented. 
A type 2 e r ror  is counted for the test of Zi if both (1) the test of Zi resulted in accept- 
ance of the null hypothesis, and (2) the particular Zi is a mean square that had been 
augmented with 6i > 0. In this way, N experiments are analyzed, each containing 
p violations of the null hypothesis. In all cases, N = 1000 and for given 1, the same 
(1000)2 

For these mean squares, and over the N experiments, the computer counts the number 
of type 1 e r r o r s  and divides by N to report the observed type 1 er ror  probability Pli 
for the ith mean square. The number of Pli computations in any experiment is 
r)  = 2 - p - 1; however, not all r)  + p mean squares were tested. The m smallest 
mean squares were pooled before testing, and, therefore, only q - m opportunities 
should be expected for making type 1 errors .  

risk (av type 1 loss) is estimated by Pli as averaged over the experiment: 

Q pseudonormal variates were used for every strategy investigated. 
The mean squares in Yates' order from i = p + 1 to i = 2' - 1 were not augmented. 

Q 

As given in equation (4), the type 1 e r r o r s  a r e  defined as unit losses. The observed 

Q 

2 Q 2 -1 
__ 1 Pli = 

2' - p - m - 1 i=o+l 
i=p+ 1 

The symbol 7 is attached to R1 to represent a fact that will be developed later; that 
is, R1 is mainly a function of 7 .  
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Equation (13) does not provide a strict probability. In any experiment, random 
fluctuations can cause some of the p augmented mean squares to have smaller values 
than some of the mean squares not so  augmented. If the strategy used a large value 
of m, some of the smallest augmented mean squares could be pooled into the initial 
denominator of the test statistic, and more than q - m of the null mean squares could 
be available for type 1 errors ,  which could result in R,(q) being greater than 1. 

The first p mean squares beyond the grand mean were augmented so that hi > 0. 
The number of type 2 e r r o r s  for each i = 1, . . . , p is counted over the N experi- 
ments and divided by N to report the observed type 2 e r r o r  probability P2i for the 
ith augmented mean square. Multiplication of these probabilities by the losses, as 
given in equation (7), allows the observed risk to be computed over the experiment. 
Thus, 

The symbol h is attached to R2 to indicate a fact that will be developed later; namely, 
R2 is mainly a function of A.  

program are given in reference 9. 

- 

Details of the decision and scorekeeping procedure as it w a s  built into a computer 

CHOICE OF PRELIMINARY TEST LEVEL 

Conditions of m, p, and A 

Those values of CY that should be preferred for a wide variety of conditions will 
now be evaluated for several arbitrarily chosen values of m. A later step will deter- 
mine preferred values of m, given that the a! a r e  already preferred values. 

The values of p will be much larger than the value of p = 1 in Daniel's investi- 
gation (ref. 2). (Comparisons of chain pooling with the operating characteristics of 
procedures based on half-normal plotting were presented in ref. 9, in which the chain 
pooling procedures were shown to be superior to the results obtained by Daniel and by 
Birnbaum. ) 

0. 05 5 R2(h) 5 0. 20. 

P 

P 

Values of h were chosen to result in R2(h) values that cover the range of 
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Experiments of Z4 Treatment Combinations 

Some results for I = 4, p = 6, 77 = 9, and m = 1 are shown in figure 2. The 
strategies consisted of m = 1 together with the values of 

1.0 

. 5  

.2  

. 1  

.05 

.02 

. 01 

.005 
.01 .02 

.~ - Constant --- - Optimal ap 

a P 
0.01 
.025 
.05 
.10 
.25 
.50 
.75 

1.00 

. 5  

a, identified by the symbols 
P 

Type 1 risk, R,C.rl) 
Figure 2. - Risk curves. I = 4, p = 6, .rl - 9, h = 64, 
m = 1. 

and the values of af that identify the solid curves. The set of preferred strategies 
(the set of points nearest the origin) is the set that jointly minimizes R1(q) and R2(h).  
These points are identified by the dashed curve drawn through them, and they include 
cy = 0.25 at the smaller values of R1(q), and cy = 0.50 at the larger values of R1(q). 
Similar results for m = 2 and m = 3 are presented in reference 9. 

An important implication of figure 2 is that a single value of CY 

preferred for all values of CYf.  However, on scanning the values of a! that are 
identified as being preferred by their lying on the dashed curve, selections can be made 
of those values of CY that should be preferred for given values of the abscissa R1(q). 
For example, figure 2 shows that the vertical line at Rl(q) = 0.05 cuts the dashed curve 
between two points for which cy = 0. 25, while at R1(v) = 0.30, cyp = 0. 50 would be 
preferred. In some cases (such as R1(v) = 0.20 of fig. 2) there is no clear choice 

P P 

cannot be 

P 
P 

P 

P 
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TABLE m. - PREFERRED NOMINAL SIZE OF P R E W A R Y  POOLTNG TEST Qp 

(a) Z4 Treatment combinations 

Number of mean 
squares pooled 
before testing, 

m 

1 

!7umber of mean 
squares pooled 
before testing, 

m 

1 

3 

5 

Average noncen- 
trality param- 

eter, 
x 
64 
81 
100 

64 
81 
100 

64 
81 
100 

64 

64 

Average noncen- 
trality p r a m -  

eter, 
x 
64 

64 
81 
49 
64 
81 
16 
64 

16 
64 

16 
64 

64 

16 
64 

16 
64 

0.05 

1 
I 
1 

.10 

.20 

0.05 
.10 
.20 

0.05 
.10 
.20 

Number d null mean squares, q I 
Nominal size of preliminary pooling test, aP 

a0.25 0.50 
a.25 .50 
a.25 .50 

.50 

.50 

.50 

.50 

.50 

.50 

aO. 50 0.75- 
.75 

a.75 1.00 

a.75 1.00 
0.75 

1.00 

Treatment combinations 

Ippe 1 risk, 
Ri(V) 
- 

0.05 

.10 

.10 

.20 

t 
0.05-  ~ 

.05 

: 10 
.10 

.20 

.20 

0.05 

.10 

.10 

.20 

.20 

0.25 
.25 
.25 

.25, 0.50 

.25, .50 

.25, .50 

.50 

.50 

.50 

0.50 
.50 a0.75 

.75 

0.75 
a .75 1.00 

1.00 

.25 

.25 

.25 

0.75 
.75 

Number of null mean Bquares, q 

6 I 9  I 14 
Nominal size of pre l ldna ry  poohg test, aP 

~~ 

0.50 

.50 
---- 
-_-- 
.50 

0.75 
.75 

.75 

.75 

1.00 
1.00 

1.00 

___-  -- 

~ -. 

1 
aUse of this value makes up independent of q at given m. 

D.. 25 

.25 

.50 

.50 

---- 

_-_- 
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between two values of a! (a! = 0.25 and a! = 0.50 are equally preferred). Results 
similar to those for figure 2 a r e  shown for  q = 6 and for q = 4 in reference 9. 

detailed in reference 9, a r e  summarized in table III(a). This summary shows that the 
preferred values of a! are completely independent of the noncentrality parameter X 
and that the preferred a! 

effects q .  

P P  P 

The preferred or equally preferred values of cup, as obtained for the conditions 

P 
can be selected to be independent of the number of null P 

Experiments of Z5 Treatment Combinations 

The type of evaluation of chain pooling strategies just described for the case of 
I = 4 was also carried out for I = 5. Results are presented in reference 9. The im- 
plications of these results for preferred values of aP are given in table III(b). This 
table shows again that the preferred values of ap are independent of the average non- 
centrality parameter X and that they are almost independent of the number of null mean 
squares r] .  

Experiments of Z6 Treatment Combinations 

Chain pooling strategies for I = 6 were investigated at values of p = 50, 40, and 
30, and the corresponding values of were 13, 23, and 33. Results with m = 1 and 
two values of X are shown by figures 3(a), 3(b), and 3(c), respectively. The results 
for q = 13 and for r] = 23 (figs. 3(a) and 3(b)) show that with m = 1, the preferred 
value of aP is 1.0, as shown by the dashed line. A preferred value of crp = 1.0 is 
also shown with r] = 33 by figure 3(c) for X = 64, but figure 3(c) shows that other values 
of a!p a r e  preferred when X = 256. The desirability of using small values of cup, 
shown by figure 3(c) at large r ]  and X is a nontypical phenomenon discussed in detail 
in reference 9. In brief, if, first, the value of r] is large relative to p, and if, second, 
17 is large on an absolute basis, and if, third, X is large enough to ensure low type 2 
losses, the preferred value of crP can be quite small. Such a favorable combination of 
p, q, and h would not ordinarily be known to exist, a priori, and the use of small 
values of aP cannot be regarded as a generally useful strategy. However, if the Monte 
Carlo investigations show that two values of aP are equally preferred for the especially 
unfavorable distributions of bi, the smaller of the two crp values could be used for the 
ANOVA of real  experiments on the chance that the 6i might have a more favorable dis- 
tribution. (Some equally preferred pairs of aP values are listed in table III. ) 

The use of values of m > 1 with I = 6 is illustrated by figure 4 for m = 3. These 
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1.0 I-- 

(a) p = HI, 7 = 13. 

Type 1 risk, Rl(q) 

(b) p = 40, 7 = 23. 

Figure 3. - Risk curves. .4 = 6 and m = 1. 

(c) p = 30, q = 33. 



.01 .02 .05 . 1  .2 . 5  
Type 1 risk, F1Cs) 

Figure 4. - Risk curves. I - 6, h - 64, p - 40, 7 = 23, 
and m = 3. 

results show that the preferred value of cup is 1.0, but that for the value of X = 64 
(which gives reasonable values of g2(X)) there were no values of af small enough to 
give values of El($ as small as might reasonably be desired. 

NUMBER OF MEAN SQUARES INlTlALLY POOLED 

The results that give preferred values of ap for  arbitrarily chosen values of m 
have been presented. Now, the results that will determine the preferred values of m 
are presented for values of ap that are already preferred. 

Experimehts of Z4 Treatment Combinations 

Some risk curves with 7 = 4 are presented in reference 9. These results showed 
preferred values of ap (which were independent of A) for m = 1, 2, and 3. These 
results are displayed in figure 5(a) but only for the single value of the noncentrality 
parameter X = 64 (which gives reasonable values of z2(X)). The curves drawn through 
the preferred ap points of figure 5(a) show that m = 2 or  m = 3 is greatly preferred 
over m = 1, but that m = 3 is only a slight improvement over m = 2. 
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Figure 5. - Risk curves. I = 4. 

(a) p = 11, q - 4, A - 64. 
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Figure 6. - Risk curves. I = 5, A = 32. 
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At a larger value of 7, the risk curves for r ]  = 6 a r e  shown in figure 5(b) for pre- 
ferred values of ap and for values of m of 1, 2, 3, 4, and 5. The strategy of m = 4 
is seen to be preferred over the important range of 0.05 5 Rl(q) 5 0.20. 

values of m of 4, 6, and 8. The strategy of m = 6 is seen to be preferred over the 
important range of 0.05 I R1(r]) 5 0. 20. 

Results for r ]  = 9 are shown in figure 5(c) for preferred values of ap, and for 

Experiments of Z5 Treatment Combi nations 

5 Results with 2 treatments for X = 32, r ]  = 6, and m = 3, 4, and 5, are shown in 
figure 6(a) for preferred values of ap.  In the important range of 0.05 5 R1(r]) 5 0. 20, 
these results show that m = 3 is the preferred strategy. Similar results for r] = 9 are 
shown in figure 6(b), and these results show m = 5 or  m = 6 to be a preferred strat- 
egy. 
0.05 5 Rl(r]) 5 0. 20. 

For 17 = 14, figure 6(c) shows that m = 7 is the best strategy over the range of - 

Experiments of Z6 Treatment Combinations 

The results achieved with P = 6 and with m = 1 and 3 (figs. 3 and 4) showed that 
ap = 1.00 was a preferred strategy with m = 1 but, that for 7 = 23, there were no 
suitable ap and af values with m = 3. The large value of r] = 23 suggests that suit- 
able values of ap and af might be found at values of m much larger than m = 3. 
Results for X = 64 and for  ap = 1.00 and 0.75 a r e  shown for a wide variety of values 
of m by figure 7(a). These computations were performed by using the smallest avail- 
able value of af, namely, af = 0.001, because the results in figure 4 show that achiev- 
ing values of Rl(r]) in the (desired) range down to 0.05 would be very difficult with 
m > 1. 

The points displayed in figure 7(a) show that the strategies with cup = 1.00 are 
better than those with a = 0.75. 

With the use of the preferred value of ap = 1.00, as indicated by figure 7(a), and 
a preferred set of m values as suggested by the lower branch of the curve of fig- 
ure 7(a) (namely, m = 5, 10, 15, 20, and 21), the question of preferred af values was 
examined for the conditions of figure 7(b). 
that, in any attempt to control Rl(q) in the range of 0.05 to 0. 20, the preferred strat- 
egy consists of using af at its smallest available value (namely, af = 0.001). 
control of R1(q) is then accomplished by the selection of a suitable value of m. 

P 

The results presented in figure 7(b) show 

The 

The case of p = 50 and r ]  = 13 was  examined for  ap = 1.0, af = 0.001, and a 
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(a) A = 64, q = 0.001. (b) up = 1.0. 

Figure 7. - Risk curves. .E = 6, p = 40, and T = 23. 

wide variety of values of m as shown by figure 8(a). These results show that m = 2, 
3, 4, and 6 constitute an attractive set of m values. The selection of preferred 
af values for such a set of m values was examined with results shown in figure 8(b). 
These results are consistent with those shown in figure 7(b) for q = 23; namely, the 
strategy of selecting cuf at its smallest value (af = 0.001) and controlling E1(q) 
through the choice of m dominates the strategy of fixing m and controlling R1(q) by 
selecting an af. 

Results for 7 = 33 are shown in figure 9(a) for ap = 1.0,  af = 0.001, and a wide 
variety of values of m. The results are similar to those of figures 7(a) and 8(a) in that 
the risk curve has a turning point at a critical value of m. For values of m in excess 
of the critical value, there is a sequence of m values along a lower branch of the loss 
curve, and such a sequence constitutes a set of preferred m values, where increasing 
the value of m within the preferred set reduces the value of R1(q) at the cost of in- 
creased R2(A). Figure 9 shows that setting af at 0,001 and controlling R1(q) through 
m is a preferred strategy for  q = 33, which is consistent with the results already cited 
for q =  13 and q =  23. 
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Figure 8. - Risk curves. J? - 6, p = 50, and r )  = 13. 
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Figure 9. - Risk curve. 1 = 6, p - 30, 1) - 33, and ap - 1.0. 
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From inspection of figures ?'(a), 8(a), and 9(a), the preferred ranges of m are pre- 
sented in the following table: 

Number of 
null mean 
squares, 

23 
33 

Preferred range of 
number of mean 
squares pooled 
before testing, 

m 

2 to 6 
6 to 21 
6 to 30 

6 The total results for  2 design experiments suggest that acceptable strategies con- 
sist of using m = 1, cup = 1.0 and af values small enough to give satisfactory values 
of R,(q). Values of m > 1 can be used, but if they are,  then according to the preced- 
ing table they should be at least as large as about (1/5)q and then ap = 1.0, cyf = 0.001, 
and values of m large enough to give satisfactory values of R,(q) should be used. 

Overall Procedure 

A reasonable strategy for the chain pooling ANOVA of a 2' design experiment 
where Q = 4 or  5 might consist of performing a preliminary analysis with m = 1 
and whatever CY value is shown by existing results (table 111) to be preferred 
for  the statistician's prior guess of the value of 77. (For Q = 6 and m = 1, the pre- 
ferred ap is equal to 1.0. ) From the results of the chain pooling ANOVA with m = 1, 

P 

TABLE IV. - RATIO OF m/q FOR GIVEN q 

AND PREFERRED m 

Number I 

treatmer 
combina 

tions, 
21 

24 
24 
24 

25 
25 
25 

Number of 
null mean 
squares, 

B 

4 
6 
9 

6 
9 

14 

Number of 
mean squares 
pooled before 

testing, 
m 

30 

I 



the statistician will have a posterior estimate 6 of q and should use this value of 6 
to pick a preferred value of m that will be greater than 1. 

A rule is needed for  picking a value of m > 1 after has been determined. The 
preferred values of m, as evidenced by figures 5 and 6 for Q = 4 and Q = 5, are pre- 
sented in table IV together with the associated ratios m/q. The modal value for Q = 4 
is 2/3, and the modal value for  P = 5 is 1/2. These values suggest the following total 
procedure: Perform the chain pooling ANOVA with m = 1 and the preferred ap for 
the guessed value of q. The result will be an estimate 6 of q. If Q = 4, let m be 
the integer nearest (2/3)<. If P = 5, let m be the integer nearest (1/2)e. With this 
new value of m, perform a second ANOVA of the observations with ap = 1.0. In the 
case of P = 6, the ANOVA with m > 1 would be performed with ap = 1.0, af = 0.001, 
and a value of m based on <, where the exact value of m is chosen to control R1(q). 

OPERATING CHARACTERISTICS 

The conservative strategy of using m = 1 has been shown to be a strategy that 
The ANOVA with m = 1 might well be used in a preliminary chain pooling ANOVA. 

would then give an estimate < of q that leads to a larger value of m, perhaps 
m = (2/3)<. The main interest is in the operating characteristics for m > 1. Risk 
curves for preferred values of m and ap are illustrated in figures 8(a), 10, and 
l l (a )  and (b). These curves map out detailed values of R1(q) and R2(X) for a wide 
variety of values of q and A, but they do not give a clear picture of the response of 
R2(X) to q and A. The response of R2(A) to q and X is shown by plots of R2(A) 
against A for stated values of R1(q) and q. The plots were obtained by reading curves 

.01 T .01 

Type 1 risk, Rl(q) 

Figure 10. - Risk curves. I = 4, p - 11, q = 4, and in = 3. 
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Figure 11. - Risk curves. I = 6, ap = 1.00, and q = 0.001. 
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Figure 12. - Type 2 risks. I = 6, Op = 
1.0, q - 0.001, and Rl(q) - 0. 10. 
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Figure 13. - Operating characteristics with preferred m. RiCq) - 0.10 and 
R$A) = 0.05. 
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I 

such as those in figures 8(a), 10, and l l (a )  and (b) for the given values of r ]  at particu- 
lar abscissa values; namely at R1($ = 0.05, 0.10, and 0. 20. The values of E2(X) so 
read were plotted as functions of A, as illustrated in figure 12. This plot shows that 
for preferred m and for  fixed El($, the values of E2(X) are strongly dependent 
on A and are only weakly dependent on r]. This observation is the basis for using the 
symbol E2(h) to express the fact that g2 is always a function of X but is mostly in- 
dependent of 17. 

figure 12. This plot shows type 2 r isks  as a function of the average noncentrality param- 
eter X for stated levels of Q, r ] ,  and the type 1 risks. These curves permit reading 
values of X for specified values of the type 2 risks. Values of X for values of R2(X) 
of 0.05, 0.10, and 0.20  were read and plotted as functions of r ]  for stated values of 
R1(r]) and E2(X), as illustrated by figure 13. For preferred m, figure 13 shows that, 
at the stated risks R1(r]) and Z2(X) ,  the detectable values of X generally decrease 
with increasing r ] .  

The general performance of the preferred strategies (m > 1) was illustrated by 

- 

EFFICIENCY AS FUNCTION OF EXPERIMENT SIZE 

The purpose of the multiple decision procedure with respect to a 2' design exper- 
iment is to detect the nonnull populations p in number. The quantity signaling that a 

2 population is nonnull is the square of the effect parameter, pi; and the relative strength, 
2 2  2 2  or signal to noise ratio is pi /(T . From equation (5), this ratio is also given by 8 Gi. 

Because of equation (6), the average value of pi /a was 8 . At given levels of risks, 
R1(r]) and E2(h), the detection of the experiment is defined as the number of signals to 
be detected p divided by the ratio of the average relative signal to noise 8 . The de- 
tection efficiency + is defined as the detection divided by the number of observations 

I 

2 2  2 
- 

2 

and from equation (12), 

+ , P  
X 

4 5  The quantity + thus provides a measure for comparing the efficiency of 2 , 2 , 
and 2 fractional factorial experiments with each other. The quantity A for given risk 
levels was plotted as curves, such as those of figure 13. The associated values of q 

6 
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P have equivalent values of p according to p = 2 - 7 - 1. Values of h read from such 
curves, together with the associated values of p,  were substituted in equation (15) to 
produce the values of IC/, the detection efficiency. 

ments. One implication of this result is that the experimenter should include all con- 
ceivable variables in his first design with no intention of adding other variables to the 
investigation at a later date. Such a policy may reqult in a large number of test con- 
ditions, leading the experimenter to seek means of achieving economy. One obvious 
method of achieving economy is to avoid the use of replication, in which case the methods 
of chain pooling become essential for  analyzing results. Another method of achieving 
economy is to use fractional replication, but fractional replication creates questions as 
to whether significant interactions are being excluded from the model. Furthermore, 
large designs may not be performable under homogeneous conditions, and blocked de- 
signs may be needed. If a severely fractionated design is performed, and the experi- 
menter wishes to augment the testing to evaluate additional interactions, special rela- 
tions must exist between the old and the new test conditions so that the newly evaluated 
interactions will not be confounded with block effects. Sequences of designs that satisfy 
these relations are given in reference 5. The sequences a r e  such that observations 
from the first block can be used to estimate the coefficients of a simple model and then 
be retained and combined with observations from new blocks so that all acquired observa- 
tions a r e  used cumulatively to estimate models of ;successively greater generality. 

4 6  This efficiency was shown to increase very rapidly from 2 to 2 design experi- 

ROBUSTNESS 

The subject of robustness was investigated by generating variates without trans- 
formation from the rectangular to the approximate normal distribution. The operating 
characteristics of the chain pooling procedure for  the pseudorectangular distribution 
were in good agreement (ref. 9) with those for the pseudonormal distributions. 

CHARTS FOR CONTROL OF TYPE 1 RJSKS 

Classical hypothesis testing enables the statistician to test  an alternative hypothesis 
against a null hypothesis with a predetermined bound on the probability of a type 1 error .  
This natural formulation of a decision procedure can sometimes be applied to multiple 
decision procedures. In the case of chain pooling, the analogous procedure of putting 
a predetermined bound on the type 1 risks is not completely feasible. Partial feasibility 
is illustrated by figure 14. The choice, for example, of a strategy (m, ap, af) leads 
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. m5 

Type 1 risk, i$(~) 
Figure 14. - Risk curves. I = 4, p = 9, r) = 6, and 
m - 1. 

to one of the dashed curves. These curves a r e  seen to be nearly vertical for X 2 64. 
Thus, the choice of a fixed strategy, for instance, (m, ap, cyf) = (1, 0. 25, 0. O l ) ,  would 
essentially fix R1(q) at 0.06 (fig. 14) provided that h > 64; however, for X < 64, 
R1(q) would increase with decreasing A. 

Figure 14 illustrates a situation where the type 1 losses a r e  insensitive to A, if 
h is sufficiently large. The type 2 r isks  had previously been shown to be mainly a 
function of A. Figure 14 thus illustrates a situation where the type 1 r isks  a r e  inde- 
pendent of the type 2 risks, if the type 2 risks are sufficiently small. This fact is 
further illustrated by figure 15(a). This figure was obtained by reading the risk curves 
of reference 9, as illustrated by figure 14, to obtain values of R1(q) that correspond 
to the specific type 2 risk levels of R2(X) = 0.05, 0. 10, and 0. 20. The result is that 
the three curves for any given af lie fairly close to one another independently of the 
three levels of g2(h). Figure 1 $a) thereby provides the information by which an 
a priori guess of q can be used to select a value of af that should control the level 
of Rl(q) fairly independently of A. 

Risk curves with m = 1 and Q = 5 are given in reference 9. These curves were 
read at values of R2(A) of 0.05, 0.10, and 0. 20 to produce the curves of figure 15(b). 
This figure also suggests that, with an a priori choice of q,  the value of R1(q) would 
not be especially sensitive to R2(X) or  to A. 

curves of figure 15(c). The relation between R1(q) and q is again seen to be essen- 
tially independent of g 2 ( A ) .  

- 

A similar reading of curves for Q = 6, as given in reference 9, produced the 

With m > 1, the control of R1(q) is much more difficult. For example, the lines 
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of the constant af in figure 10 have no regions where a fixed strategy results in essen- 
tially constant kl(q). The same technique used in plotting figure 15 was used to plot 
figure 16 from data in reference 9 €or strategies where both m and ap were at pre- 
ferred values. Here the values of R1(q) are widely separated according to the value 
of R2(h). 

A rigid relation between the type 1 and type 2 r isks  was illustrated by figure 14 in 
the region of X > 64; that is, the choice of m, ap, and af essentially fixed the value 
of R1(q) independently of R2(h), as shown by the vertical direction of the curves of the 
constant af. An elastic relation between the type 1 and type 2 r i sks  is illustratea in 
figure 10, in that for any fixed strategy (m, cup, of), R1(q) varies with R2(h) in any 
range of A. An increase in the value of h will simultaneously reduce R1(q) and 
g2(A). In this situation, a statistician might desire some bound on the average prob- 
ability of failing to detect real effects. Assume that he has estimated q from an  
initial ANOVA with m = 1. 
and with the desired type 2 loss bound (particular value of E2(h)). For such values of 

and R2(X), he can now choose a value of af to give some desired El($. He can 
then say that if the average noncentrality parameter is large enough to hold the type 2 
r isks  to the chosen bound, the selected af will be small  enough to hold the type 1 r isks  
to the chosen Rl(q). If the average noncentrality parameter is larger than what he had 
hoped for, both the type 2 and type 1 r isks  will be lower than specified. If the average 
noncentrality parameter is less than what would give small  type 2 risks,  he must accept 
increased type 1 risks. In any event, having chosen some strategy (m > 1, cyp, af), 
he must realize that it is an  optimal strategy for  some combination of the type 1 and 
type 2 risks, the only drawback being that, if the average noncentrality parameter is 
small  enough to boost the type 2 risks, it will also boost the type 1 risks. 

This elasticity between the type 1 and type 2 r isks  with m > 1 could be considered 
an advantage over the strategy with m = 1; that is, if the average noncentrality param- 
eter  is smaller than what the statistician had hoped for, then, with the elastic type 1 
risk, the type 2 r isks  will be smaller than they would have been if the type 1 r isk had 
been rigidly controlled by the strategy of m = 1. (Compare figs. 10 and 14. )  

He can now enter figure 16(a) with this estimate, 6, 

CONCLUDING REMARKS 

Factorial experiments are essential when interactions among the factors can be 
important. Such experiments might be performed without replication, if the experi- 
ments are expensive, as in alloy development, o r  in the destructive testing of structures, 
or where many variables a r e  involved, such as high-temperature protective coating 
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research. Not replicating produces an economy but leads to a situation where there is 
no well-established strategy for  analyzing the results. 

2 , and 2 fractional factorial design experiments suggested that a good overall strat- 
egy consists of starting the analysis with just the single smallest mean square, and it 
is assumed to have come from a null population. Testing proceeds at some level cyp 

in the order of increasing magnitude of the mean squares. Mean squares found not sig- 
nificant are pooled into the denominator of the test statistic. If a mean square is found 
significant at level cyp, testing begins with it at a more stringent level cyf and pro- 
ceeds in the order of increasing magnitude of the mean squares. If a mean square is 
found significant at level cyf, it and all larger mean square are declared significant. 
This procedure gives an estimate of the number of null effects in the experiment. 
A second analysis of the data is then performed with the use of a test statistic with 
m > 1 smallest mean squares initially pooled into the denominator of the test statistic. 

For 2 design experiments, a good choice of m is the integer nearest (2/3);. 
2 design experiments a good choice of m is the integer nearest (1/2)6. For 26 design 
experiments, a good strategy consists of choosing cyp = 1.0, cyf = 0. 001, and then 
choosing m to control the type 1 risk. 

can be achieved through the choice of cyf. 

real  effects, and curves are given for  &timating weighted average e r ro r  probabilities 
after the real effects have been estimated. 

The chain pooling procedure compared favorably with Daniel's modulus ratio sta- 
tistic (half-normal plotting) for  the case of just one real effect. 

4 Some Monte Carlo investigations of varieties of chain pooling procedures for 2 , 
5 6 

4 For 
5 

Curves are given so that some control over the average probability of type 1 e r ro r  

The actual type 1 and type 2 e r ro r  probabilities depend on the magnitudes of the 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 6, 19'67, 
129-03-01-03-22. 
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APPENDIX A 

CURVES FOR POSTERIOR ESTIMATION OF RISKS 

The assumptions are now introduced that a 2' design experiment has been com- 
pleted, that a preliminary chain pooling ANOVA has been performed with m = 1 and 
with some ap and af, and that a second ANOVA has been performed with some pre- 
ferred m > 1. The experimenter may be satisfied with the results, or he may have 
some questions such as 

(1) Should the ANOVA be performed at some other af ? 
(2) Should the conditions of the experiment be changed to provide larger values of 

(3) Should more precise (and more costly) instrumentation be used? 
the pi? 

Partial answers to these questions may be obtained from posterior estimates of the 
type 1 and type 2 risks. The starting point of such estimates is the estimation of an 
average noncentrality parameter A. 

An average of the Ai, as computed from equation (3), is 

P 1 A=-C p i=l 'i 

i= 1 

- - -  a' 2 /-l; 
2 

PO i=l 

Replacing the unknown parameters by quantities estimated from the experiment 
gives 

P 2 -1 

The multiple decision ANOVA procedure leads to the conclusion that 6 mean squares 
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A 

a r e  free from real effects, and that 
The fi  effects concluded to be significant have estimators ci give by Yates' algorithm. 

and Freeny (ref. 3). Where 4 is regarded as the total sample size, the censored 
2 sample consisting of the m smallest ordered contrasts is used to estimate u . 

in a different form in figure 17. The statistician may enter figure 17 with (1) the value 
of I for the design of the experiment, (2) the value of af used in the decision making, 
(3) the value of 6 resulting from the decision procedure, and (4) the average value 
computed as just described. Visual interpolation with respect to 7 and X should then 
result in a pair of values 
for the total procedure. In the event mat the values of $ and did not fall within the 
ranges of existing curves in figure 17, the statistician could still notice whether his 
values of 4 and fi suggested that the risks were less than, o r  greater than, some 
values for which curves had been drawn. Figure 17 was obtained from Monte Carlo 
computations where the true values of q and h were known. The statistician's pos- 
terior estimates of R1(q) and R2(X) will be dependent on e r r o r s  of estimate in 6 
and x. Furthermore, if the distribution of Xi in the real experiment was favorable to 
the decision procedure, the estimate of g 2 ( h )  will be too high because figure 17 was 
based on unfavorable distributions of the hi. 

The value to the experimenter of making these posterior risk estimates is twofold 
(1) For the strategy with m > 1, the type 1 risk is dependent on the value of A so that 
the selection of a strategy (m, ap, af) might result in a true R1(q) somewhat different 
from what the statistician had desired when he first selected a strategy according to 
figure 16. The posterior estimation of R1(q) might then tell the statistician to perform 
another analysis with a different value of af. ( 2 )  The analysis with m > 1 is done 
with no knowledge of A and therefore with no attempt to balance the type 1 and type 2 
risks. In some cases, the experimenter may want to do some balancing. Suppose the 
value of X were small  so that the posterior r isk estimates were Rl(q) = 0. 20 and 
E2(X) = 0. 20 .  Then, further analysis would seem to be of no value. On the other hand, 
if were large and the posterior r isk estimates were, for example, El($ = 0.20 and 
E2(X) = 0.02, the experimenter might desire another analysis (presumably with de- 
creased af or  increased m) that would decrease El($ at the expense of increasing 

= 2I  - q - 1 mean squares contain real effects. 

The estimate G2 can be obtained from the procedure given by Wilk, Gnanadesikan 

Information such as that presented in figures 8(a), 10, and ll(a) and (b) is presented 

and E2(X)  that would be the posterior r isk estimates 

- 
R2(X) * 
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APPENDIX B 

ILLUSTRATIVE EXAMPLE - COBALT- BASE-ALLOY DEVELOPMENT, 

ONE-HALF REPLICATE WITH FIVE FACTORS 

General C h a i n  Pooling ANOVA Strategies 

The analysis is presented from two points of view. The first point of view, the 
significance point of view, assumes that the statistician must be conservative in drawing 
conclusions, and that the probability of making type 1 e r r o r s  will be controlled. The 
second point of view, the screening point of view, assumes that all effects that might 
be real should be so identified. With this point of view, the statistician is particularly 
concerned about type 2 errors .  

The first analysis begins 
with the strategy m = 1 and leads to an estimate 6 of the number of null mean squares. 
Based on this estimate of q, a second iteration of the ANOVA is performed with pre-  
ferred m > 1. 

logarithms of stress-rupture times to failure of cast specimens. The effects to be 
estimated (table V) include 1 grand mean, 5 main effects, and 10 interactions. 

acteristics given for m = 1 by figure 15(a) and for preferred m > 1 by figure 16(a). 
The use of these curves requires that a prior estimate be made for q. 
ample, the number of null mean squares is assumed to be equal to the number of highest 
order interactions; namely, the assumption is q = 10. 

and 16 also requires that some assumptions be made about the value of R2(X). Because 
the operating characteristics with m = 1 a r e  not sensitive to the value of X, the curves 
of figure 15 are closely spaced with respect to R2(h), and therefore a single arbitrary 
value (the middle curve for R2(X) = 0. 10) will be used. The operating characteristics 
are critically dependent on A or R2(X) when m > 1, as in figure 16. In using fig- 
ure  16, assumptions a r e  made about R2(X) according to the purpose of the ANOVA. 
Comparatively large type 2 r isks  should be anticipated with the significance point of 
view and for such a situation, the assumption is R2(X) = 0. 20. With the screening point 
of view, comparatively small  type 2 r isks  should be anticipated and R2(X) = 0.05 is 
assumed. 
significance levels often used in statistical procedures. 
are regarded as being consistent with the election to use the economy model experiment 

In either case, the ANOVA proceeds in two analyses. 

The results of the Yates' computation are given in table V. The responses yi are 

The strategy (m, ap, of) is chosen according to information on the operating char- 

For this ex- 

In addition to making a prior estimate of q, the use of the curves of figures 15 

These assumptions of risk levels of 0.05, 0.10, or 0. 20 a r e  higher than the 
These high type 2 risk levels 
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TABLE V. - ILLUSTRATIVE EXAMPLE OF ONE-HALF 25 DESIGN EXPERIMENT 

- 
1 

- 
0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

LO 
11 

12 
13 
!4 
.5 - 

rreatmenl 
levels 

(1) 
ae 
be 
ab 

ce 
ac  
bc 

abce 

de 
ad 
bd 

abde 

cd 
acde 
bcde 
abcd 

~ 

tesponses 

Yi  

~ 

2.2715 
2.0708 
1.3745 
1.2458 

2.2810 
2.0950 
I. 5207 
1.5290 

1.8199 
1.5687 
.7947 

1.2701 

2.2006 
1.9759 
1.1924 
1.2240 
~~. -~ - -  

Parameter; ?ammeter 
?stimates,a 

lii 

1.6522 
-. 0297 
-. 3833 
.0781 

.lo02 
-. 0166 
-. 0025 
-. 0217 

-. 1464 
.0336 
-. 0022 
.0448 

.0423 
-. 0356 
-. 0520 
-. 0370 

Mean 
squares, 

Z.  
1 

1,000079 
. OOOLO3 
.om408 

. o i 4 i ~ a  

.007567 

.018099 

.020248 

.021949 

.028594 

.032091 

.043254 

.097554 

.160510 

.342750 
!. 350200 

Significance paint of view 

First analysis with 
m, a,,, af) = 1, 0.25, 0.01 

J.(exper .) 1 

1.1319 
b2. 8810 

2.9295 
2.9619 
2.9701 
2.9733 

2.9753 
C2.9810 

Uj(ffyp) 

1.923 
2.527 

~ 

U j b f )  

1.99986 
2.9809 

Second analysis with 
m, up, of) = 5, 1.0, 0.01 

U.( exper .) 1 

2.4449 
2.6090 

2.7285 
3.1244 
3.2966 
3.7303 

4.7253 
5.1548 

c5. 5722 

are  contrasts'divided by 2'. 
bSignificant at level ap. 
'Significant at level af. 

that has no replication. Of course, the parameters of the true physical situation could 
be such that these assumptions are much too large or much too small. Such assump- 
tions must be made so that a decision strategy can be selected that will be somewhat 
appropriate to the experimenter's needs in the design and analysis of the experiment. 
When the analysis is completed, posterior estimates can be made of the risks El(?) 
and R2(h).  

Because the type 2 risks should always be minimized, the largest af value that 
will not result in too large a value of El(q) should be chosen. Since the operating char- 
acteristics with m = 1 are inferior to those with preferred m > 1, the statistician 
should be less stringent about R1(q) when using m = 1, than when using preferred 
m > 1. Under the previously stated assumptions concerning R2(A), the strategy 
(m, ap, cyf) will be chosen from figure 15(a) and from 16(a) according to the resulting 
value of R1(q). 
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Significance Point of View 

First analysis, m = 1: 
(1) Assume that q = 10 and E2(X) = 0.10. 
(2) In figure 15(a) with q = 10 and R2(X) = 0. 10, choose the highest af that yields 

an acceptable Rl(q) and note the required ap. Figure 15(a) shows that if af = 0.01, 
El($ is 0.14 and ap is required to be 0. 25. 

(3) The strategy (m, ap, af) = (1, 0.25, 0.01) and the chain pooling ANOVA re- 
sulted in ;= 8 and ;= 7. 

Second analysis, m E (2/3)6 = (2/3)8 5: 
(1) Assume that q = 6 = 8 and that E2(X) = 0.20. 
(2) In figure 16(a) with q = 8 and E2(X) = 0. 20, choose the highest af that yields 

an acceptable El($ and note the required ap. 
the R1(q) is 0.08, and ap is required to be 1.00. 

sulted in ;= 13 and i = 2. 

Figure 16(a) shows that if af = 0.01, 

(3) The strategy (m, ap, af) = (5, 1.00, 0. O l ) ,  and the chain pooling ANOVA re- 

Screening Point  of View 

First analysis, m = 1: 
(1) Assume that v =  10 and that R2@) = 0.10. 
(2) In figure 15(a) with q = 10 and E2(X) = 0. 10, choose the highest af that yields 

an acceptable Zl(q) and note the required ap.  
the R1(q) is 0. 24 and ap is required to be 0. 50. 

sulted in + = 4 and 6 = 11. 

Figure 15(a) shows that if af = 0.025, 

(3) The strategy (m, ap, af) = (1, 0.50, 0.025), and the chain pooling ANOVA re- 

Second analysis, m E (2/3)6 = (2/3)4 E 3: 
(1) Assume that q = 4 and that R2(X) = 0.05. 
(2) In figure 16(a) with 77 = 4 and E 2 ( X )  = 0.05, choose the highest af that yields 

an acceptable E1(q) and note the required ap. Figure 16(a) shows that if af = 0.05, 
the R1(q) is 0.17 and ap is required to be 1.00. 

(3) The strategy (m, ap, cyf) = (3, 1.00, 0.05), and the chain pooling ANOVA re- 
sulted in ;= 11 and 6 = 4. 

In summary, the significance point of view with m = 1 resulted in 6 = 7, whereas 
the preferred m = 5 resulted in = 2. The screening point of view with m = 1 r e -  
sulted in ; = 11, whereas the preferred m = 3 resulted in i = 4. The need for going 
beyond m = 1 to the second iteration with m > 1 is obvious. The statistician might 
seek convergence of 6 by continuing with further iterations of the ANOVA, using new 
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values of m E (2/3)6, where 
The operating characteristics of such a procedure have not been investigated. 

is determined by the immediately preceding iteration. 

Posterior Estimates of Risks 

The risk levels of figure 16 for preferred m > 1 are dependent on the value of 7, 
which was only crudely estimated by the initial analysis with m = 1. Furthermore, the 
risk levels of figure 16 are dependent on the values of the Xi, and no information on 
their values was used in entering figure 16. For these two reasons, a posterior esti- 
mate of El($ and R2(X) is highly desirable. Such estimates will  now be made for the 
second iteration under the screening point of view. 

cision to use some small number of the smallest mean squares. The value of m = 3 
2 as used in the ANOVA is retained for this estimate of cr . The equivalence between 

the notation of reference 3 and the present notation is 

The quantity cr2 is estimated in the manner of reference 3, which requires a de- 

Also, 

2 j= 1 
j 

Z 

mZm 

From table V,  the sum of the three smallest mean squares is 0.004590. Also, 

mZm = (3) (0.004408) = 0.013224 

2 0.004590 = 0.347 
= 0.013224 

Interpolation in table 1 of reference 3 gives l/t = 8.30, and the variance estimate 
is 

62 'm 

P 
u = -= (0.004408) (8.30) = 0.0366 
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TABLE VI. - ONE-HALF 25 DESIGN EXPERIMENT ON COBALT ALLOYS 

Estimate 
of num- 
ber of 

null 
mean 

mean 
square, 

~. 

Estimate 
of num- 
ber of 
real 

effects, 

First 1 10 

issumed 
type 2 
risk, 
s2(A) 

Number 
of mear 
squareE 
pooled 
before 
testing: -1: 

Nominal 
size of 
prelim- 
inary 

pooling 

Nomina 
size of 
final 

signifi. 
came 

test, 

P a 
test, 

af 

Significance point of view 

0.25 0. 01 

1.00 . 01 

-~ 

8 7 

13 2 

_ _ ~  

Screening point of view 

%nor extrapolation. 

The ANOVA results were 6 = 11 and 

Levi, 
m 

- 

Estimate 
of aver- 
age non- 
central- 

ity 
param- 

eter, 
i 

---- 
23.6 

= 4. The significant effects are therefore 

(Estimate 

I-L 12 

the four largest absolute values of the bi (aside from bo) of table V 

-0.3833 
-. 1464 

. l o o 2  

The mean noncentrality parameter is given by equation (Al): 

- - l6 [(O. 3833)2 + (0. 1464)2 + (0. 1002)2 + (0 .0781)~I  
(4) (0.0366) 

= 20.164 
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The posterior r isk estimates are obtained from figure 17(a). The strategy used 
af = 0.05 to conclude that ; = 11. From figure 17(a) with h = 20, q = 11, and 
af = 0.05, crude graphical extrapolation suggests that, roughly, Rl(q) = 0.18 and 
R2(X) = 0.06. 

The four analyses of the 2 experiment on cobalt base-alloys are summarized in 
table VI. In review, the analysis was  begun from the significance point of view with 
m = 1 and with the guess of q = 10. Because the type 1 e r r o r s  are insensitive to h 
with m = 1, an arbitrary value could be assumed for Z2(A), and the value chosen was 
g2(X) = 0.10. Under these conditions, the choice of (m, ap, af) = (1, 0.25, 0.01) and 
the use of figure 15(a) gives the estimate E,(q) = 0.14. Performance of the analysis 
resulted in = 8 and 6 = 7, and for  this 24 experiment, a preferred vaiue of m was 
then chosen according to table V as m E (2/3)6 = (2/3)(8) G 5. The second analysis 
with m = 5 was begun with a prior estimate of 11 from the first analysis, namely, 
;i = 8. From a significance point of view, the type 2 e r r o r  should be expected to be high, 
and (consistent with this point of view) the type 2 risk was arbitrarily assumed to be 
large, namely, K2(X) = 0.20. The decision procedure with (m, ap, af) = (5, 1.00, 0.01) 
then begins with K1(q) estimated from figure 16(a) as R1(q) estimated from figure 16(a) 
as R1(q) = 0.08. The procedure resulted in 
selected as being significant (aside from the grand mean) a r e  the i = 2 largest mean 
squares. 
and R2(X) = 0.07. Thus, the posterior estimate of Rl(q) is fairly close to the initial 
control value of El(q) = 0.08; however, the posterior estimate of Z2(h) = 0.07 (which 
has now been based on 
of R2(h) = 0.20 (which was chosen with no knowledge of A). 

As  presented in table VI, the posterior risk estimates under the significance point 
of view were based on 6 = 13 and 6 = 2, whereas the screening point of view resulted 
in 6 = 11 and 
doubled the number of effects concluded to be significant. 

nificance point of view, showed that increasing Rl(q) from 0.07 to 0.18 achieved a re- 
duction of E2(A) from 0.07 to 0.06. That such a small  improvement in R2(X) occurred 
at such a large cost of El($ might be associated with the fact that E2(h) was already 
at a point of diminishing returns in the analysis with the significance point of view. Of 
course, the important conclusion with respect to the experiment is that at least 6 = 2 
effects (aside from the grand mean) are clearly significant, whereas as many as 6 = 4 
effects are possibly significant. The reader may compare these conclusions with his 
interpretation of the half-normal plot, which is shown in figure 18. 

4 

= 13 and i = 2. The mean squares 

The posterior estimation of risks using figure 17(a) then leads to E1(q) = 0.07 

and x) is quite different from the arbitrary initial assumption 

= 4. Thus, the strategy used with the screening point of view has 

The posterior r isks  for the screening point of view, when compared with the sig- 
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0- . 1  . 2  . 3  . 4  
Estimate of regression coefficient 

Figure 18. - Half-normal plot for one-half Z5 design experiment on 
cobalt-base alloys. 
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APPENDIX C 

Nominal 
size of 

prelim- 
inary 

pooling 
test, 

P " 

ILLUSTRATIVE EXAMPLE - PENICILLIN PRODUCTION, 

__ 
Nominal 
size of 
f ina l  

signifi- 
cance 
test, 

"f 

FIVE-FACTOR EXPERIMENT IN TWO BLOCKS 

Poste- 
rior 

type 1 
risk, 
R1(d  

- 

This experiment was first analyzed in reference 1. It was also used as an example 
of half-normal plotting in reference 2 and as an example of variance estimation in ref - 
erence 3. The results of a chain pooling ANOVA together with posterior estimates of 
type 1 and type 2 r isks  are given in table VII. These results will be compared, for equal 
levels of the type 1 risk, with results achieved in a manner similar to that of reference 1. 

postel 
rior 

type 2 
risk, 
R2(M 

._ 

TABLE VII. - z5 DESIGN EXPERIMENT ON PENICILLIN 

__ 
Esti- 

mate of 
number 
of null 
mean 

squares, 

ysis L 
Esti- 

mate of 
number 
of rea l  
effects, 

p 

of num- risk, 
ber of R1(d 

mean 

~ 

Assumed I N u g e I  
type 2 
risk, 
RZ(X) 
- 

of mea1 
squarer 
pooled 
before 
test, 

-. . I -m - -. I_--- 

significance point of 'view 

Re - 
vised 

m 

Esti- 
mate of 
average 
noncen- 
trality 
param - 

eter, 
x 

- .. 

As summarized in table VII, the analysis from a significance point of view with 

a, 
preferred m = 6 led to the conciusions that 6 = 20 and 
were estimated at R1(q) = 0.10 and R2(X) = 0.04. The analysis from a screening point 
of view led to the conclusions that f i  = 12 and 6 = 19. The posterior estimates of risk 
were off the curves, but extrapolated values are (very roughly) R1(q) = 0. 20 and 
R2(X) = 0.01. The only meaning that can be attached to such extrapolated risk estimates 
is that no more than the 19 largest mean squares should be regarded as being significant. 
The significance point of view with posterior R1(q) = 0.10 and R2(A) = 0.04 gave 

= 11. The posterior r isks  

- 

= 11, which seems to be a reasonable appraisal of the experiment. 
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Davies' analysis (ref. 1, example 9.2, pp. 383 to 387 and pp. 416 to 418) is an 
attempt to test significance at the 5-percent level with the use of the three- and four- 
factor interactions (15 degrees of freedom) to estimate e r ror  variance. (The five-factor 
interaction was not pooled into the e r ror  estimate because it had been confounded with a 
block effect.) Davies concluded that the significant effects were pl, p3, p5, and p35; 
however, he felt that the conclusion with respect to p35 was only weakly supported by 
the present experiment and was mainly supported by prior experiments. Based on the 
pooled three- and four -factor interactions, the e r ror  variance was estimated at 
G2 = 0.0034. 
of freedom is 4. 54, whereas the 0.10 point is 3.07. Therefore at the 0.05 level, the 
mean squares that should be considered significant are all those larger than (0.0034) 
(4. 54) = 0.01544, whereas at the 0.10 level, mean squares should be considered signifi- 
cant if they exceed (0.0034)(3. 07) = 0.01044. At these levels (see table 9C. 1 of ref. 1) 
the significant effects a r e  as follows: 

The upper 0.05 percent point of the F-distribution with 1 and 15 degrees 

0.05 Level: 0.10  Level: 

IJ.5 IJ.5 
I-ll IJ.1 
IJ.3 p3  

p 12 
IJ.135 

IJ. 1234 

The use of the F-test with 1 and 15 degrees of freedom is equivalent to the use of 
the double tailed t-test with 15 degrees of freedom. 
conclusions of the double tailed t-test with cy = 0. 10. 
with cy = 0.10  is equivalent to testing the absolute values of the ii using a single 
tailed t-test with cy = 0.05. For such a test, and with 15 degrees of freedom, tabulated 
data from reference 11 was used to plot the type 2 e r r o r  curve, as shown by figure 19. 
This curve was then used with the estimated values of the eight largest ii (aside from 
the grand mean) to compute a weighted average value of a posterior estimate of a type 2 
risk in accordance with equations (3), (5), (6), and (14). The result was  R2(X) = 0.060. 

The chain pooling ANOVA and &e use of the t-test with Davies' estimate of cr2 a r e  
then comparable at a! = R1(q) = 0. 10. The comparison is as follows: 

In essence, 6 = 23 and = 8 a r e  
Usage of the double tailed t-test 
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Figure 19. - Type 2 er ro r  probability fo r  single tail 
t-test of size a = 0.05 with 15 degrees of  freedom 
(ref. 11). 

Chain pooling t-Test 
- 
R~(T,J) = 0. 10 a = 0.10 

m =  6 d.f. = 15 
;i= 20 f i =  23 
;= 11 p =  8 

E2(A) = 0. 04 R2(A) = 0. 060 

Thus with the same type 1 risk, the chain pooling has operated with a lower type 2 
r isk and declared three more effects significant, as compared with the t-test. 
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